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Abstract

In this paper, we introduce the concept of property UC∗∗ and Geo-
metric F - contraction. We establish and prove the existence of best
proximity points for multivalued Geometric F - contraction mappings
in complete metric spaces.Our results improved and generalizes the
results of Konrawut Khammahawong et.al.
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1 Introduction

Throughout this paper, for metric space (X, d), we denote Cb(X) by the
family of all non-empty closed bounded subsets of a metric space (X, d). The
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Pompeiu - Hausdorff metric induced by d on Cb(X) is given by

H(A,B) = max {sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

for every A,B ∈ Cb(X), where d(a,B) = inf{d(a, b) : b ∈ B} is the distance
from a to B ⊆ X

Remark 1. The following properties of the Pompeieu - Hausdroff metric
induced by d are well known.

1. H is a metric on Cb(X)

2. If A,B ∈ Cb(X) and h > 1 be given , then for every a ∈ A ∃ b ∈ B 3
d(a, b) ≤ hH(A,B)

In 1992, Banach Contraction principle was defined by Banach. Let
T : X → X be a self mapping of a complete metric (X, d) such that
d(Tx, Ty) ≤ Ld(x, y) for each x, y ∈ X, where 0 ≤ L < 1. Then T has a
unique fixed point. Further, since Banach’s simplicity, usefulness and appli-
cations, it has become a very popular tools in solving the existence problems
in many branches of mathematical analysis. Several authors improved, ex-
tended and generalized banach’s fixed point theorem in many directions.

In a different way, if T is a non-self mapping then there is no fixed point
from equation Tx = x. The investigation of this case that there is an ele-
ment x such that d(x, Tx) is minimum. This point becomes a concept of best
proximity point theorem, so theorem guarantees the existence of an element
x such that d(x, tx) = d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B} then
x is called a best proximity point of non-self mapping T . Since a non-self
mapping T has no fixed point, but this mapping gives a best proximity point
so it is optimal approximate solution of the fixed point equation Tx = x. If
d(A,B) = 0, then a fixed point and a best proximity point are same point.
A best proximity point is reduced to a fixed point if T is a self mapping.

In 1969, Fan [1] be the first who study in area of the best proximity point
theorem. He established a classical best approximation theorem. Afterwards
several researchers have been extended the best proximity theorem in many
directions.

In the same year, Nadler [3] gives new idea of the Banach contraction
principle. Researcher extended the theorem from single valued mapping to
multivalued mapping.

The purpose of this article is to first introduce the notion of UC∗∗ prop-
erty and geometric F - contraction pair. Moreover, we apply this results
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in uniformly convex Banach space. We also study some results and give il-
lustrative example of our theorem. Nadler [3] also combine the idea of
Lipschitz mappings with multivalued mappings and fixed point theorems as
follows. Recently Wardowski [5] proved one of interesting in fixed point
theorem which is F - contraction mapping on complete metric spaces.

The aim of this paper, we introduce the notation and concept of multi-
valued Geometric F - contraction pair and prove a best proximity point such
a mappings in a complete metric space via property UC∗∗.

2 Preliminaries

In this paper, we give some basic definitions and concepts related to the main
results of this article. Throughout this paper we denote N, R, R+ by the set
of positive integers, the set of real numbers and the set of non- negative real
numbers respectively.

Definition 1. [10] Let A and B be non-empty subsets of a metric spaces X
and T : A→ 2B be a multivalued mapping. A point x ∈ A is said to be best
proximity point of a multivalued mapping T if it satisfies the following
condition

d(x, Tx) = d(A,B)

We have that a best proximity point reduces to a fixed point for a multivalued
mapping if the underlying mapping is a self mapping.

Definition 2. [10] A Banach space (X, ‖ . ‖) is said to be

1. strictly convex if the following condition holds for all x, y ∈ X:

‖ x ‖= 1 and x 6= y ⇒ ‖ x+ y

2
‖< 1

2. uniformly convex if for each ε with 0 < ε ≤ 2, there exists δ > 0 such
that the following condition holds for all x, y ∈ X:

‖ x ‖≤ 1, ‖ y ‖≤ 1 and ‖ x− y ‖≥ ε ⇒‖ x+ y

2
‖< 1− δ

Remark 2. It is easy to see that a uniformly convexity implies strictly con-
vexity but the converse is not true.
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Definition 3. [7] Let A and B be nonempty subsets of a metric space X.
The ordered pair (A,B) is said to satisfy the property UC if the following
holds:

If {xn} and {zn} are sequences in A and {yn} be a sequence in B such
that d(xn, yn)→ d(A,B) and d(zn, yn)→ d(A,B) then d(xn, zn)→ 0

Example 1. [7] The following are some examples of a pair of nonempty
subsets (A,B) satisfying the property UC

1. Every pair of nonempty subsets A, B of a metric space(X, d) such that
d(A,B) = 0

2. Every pair of nonempty subset A, B of a uniformly convex Banach
space X such that A is convex.

3. Every pair of nonempty subset A, B of a strictly convex Banach space
where A is convex and relatively compact and the closure of B is weakly
compact.

Definition 4. [6] Let A and B be nonempty subsets of a metric space (X, d).
The ordered pair (A,B)satisfies the property UC∗ if (A,B) has property UC
and the following conditions holds: If {xn} and {zn} are sequences in A and
{yn} be a sequence in B satisfying

1. d(zn, yn)→ d(A,B) as n→∞

2. For each ε > 0, there exists N ∈ N such that

d(xm, yn) ≤ d(A,B) + ε

for all m > n ≥ N

then d(xn, zn)→ 0 as n→∞.

Example 2. The following are some examples of a pair of nonempty subsets
(A,B) satisfying the property UC∗

1. Every pair of nonempty subsets A and B of a metric space(X, d) such
that d(A,B) = 0

2. Every pair of nonempty closed subset A and B of a uniformly convex
Banach space X such that A is convex.(see Lemma 3.7 in [4])

Wardowski [5] defined the following contraction which was called F - con-
traction as follows:
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Definition 5. Let F : R+ → R be a mapping which is satisfying the following
conditions:

(F1) F is strictly increasing i.e., for all α, β ∈ R+, F (α) < F (β) whenever
α < β.

(F2) For each sequence {αn}n∈N of positive numbers lim
n→∞

αn = 0 iff

lim
n→∞

F (αn) = −∞.

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αk(α) = 0

We denote by F the family of all functions F that satisfy the conditions
(F1)- (F3).For examples of the function F the reader is referred to [5] and
[8]

Definition 6. Let (X, d) be a metric space. A self-mapping T on X is called
an F - contraction mapping if there exists F ∈ F and τ ∈ R+ such that

∀x, y ∈ X, [d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))] (1)

Remark 3. From (F1) and (1) it is easy to see that every F - contraction is
necessarily continuous.

Definition 7. Let A and B be nonempty subsets of a metric space X.
A map T : A ∪B → A ∪B is a geometric contraction map if
(i) T (A) ⊂ B and T (B) ⊂ A.
(ii) For some α ∈ (0, 1) and all x ∈ A and y ∈ B we have

d(Tx, Ty) ≤ d(x, y)αd(A,B)1−α

Example 3. If A = {(x, 0) : x ≥ 1}, B = {(0, y) : y ≥ 1}, and

T (x, y) = (
√
y,
√
x). Then d(A,B) =

√
2 and α =

1

2
,

‖ T (x, 0)− T (0, y) ‖ =‖ (0,
√
x)− (

√
y, 0) ‖

=‖ (
√
y,
√
x) ‖

=
√
x+ y

≤
√√

2
√
x2 + y2

=
√
d(A,B) ‖ (x, 0)− (0, y) ‖

Hence T is a geometric contraction map with respect to α =
1

2
.

5

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 
ISSN 2229-5518  

1270

IJSER © 2017 
http://www.ijser.org

IJSER



3 Main Results

In this section, we introduce the notion of property UC∗∗ and concept of
multivalued geometric F - contraction pair and prove a best proximity point
such a mappings in a complete metric space.

Definition 8. Let A and B be nonempty subsets of a metric space (X, d).
The ordered pair (A,B)satisfies the property UC∗∗ if (A,B) has property UC
and the following conditions holds:
If {xn} and {zn} are sequences in A and {yn} be a sequence in B satisfying

1. d(zn, yn)→ d(A,B) as n→∞

2. For each ε > 0, there exists N ∈ N such that

d(xm, yn) ≤ εd(A,B)

for all m > n ≥ N

then d(xn, zn)→ 0 as n→∞.

Definition 9. Let A and B be non-empty subsets of a metric space. Let
T : A → 2B and S : B → 2A be multivalued mappings. The ordered pair
(T, S) is said to be a multivalued Geometric F - contraction if there exists F
∈ F and τ > 0 such that
H(Tx, Sy) > 0 =⇒ 2T + F (H(Tx, Sy)) ≤ F (d(x, y)αdist(A,B)1−α),
For all x, y ∈ X, where α ∈ (0, 1).

Theorem 1. Let A and B be non-empty closed subsets of a complete metric
space X such that (A,B) and (B,A) satisfy the property UC∗∗.
Let T : A→ Cb(A) and S : B → Cb(A). If (T, S) is a multivalued geometric
F - contraction pair, then T has a best proximity point in A (or) S has a
best proximity point in B.

Proof. We divide the case into two.
Case 1: Assume that d(A,B) = 0

Now, we will construct the sequence {xn} in X as follows. Let x0 ∈ A
be an arbitrary point. Since Tx0 ∈ Cb(B), we can choose x1 ∈ Tx0. If
Tx0 6= Sx1, since F is continuous from the right then there exist a real
number h > 1 and τ > 0 such that

F (hH(Tx0, Sx1)) < F (H(Tx0, Sx1)) + τ

6
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from d(x1, Sx1) < hH(Tx0, Sx1), we deduce that there exists x2 ∈ Sx1 such
that

d(x1, x2) ≤ hH(Tx0, Sx1)

It follows from the definition of F , we have

F (d(x1, x2)) ≤ F (hH(Tx0, Sx1))

< F (H(Tx0, Sx1)) + τ

which implies

F (d(x1, x2)) ≤ F (H(Tx0, Sx1)) + τ

≤ F (d(x0, x1)
α) + τ − 2τ

≤ F (d(x0, x1)
α)− τ

≤ F (d(x0, x1))− τ

otherwise, if Tx2 6= Sx1, since F is continuous from the right then there
exists a real number h > 1 and τ > 0 such that

F (hH(Sx1, Tx2)) < F (H(Sx1, Tx2)) + τ

Now from d(x2, Tx2) < hH(Sx1, Tx2), we obtain that there exists x3 ∈ Tx2
such that

d(x2, x3) ≤ hH(Sx1, Tx2)

Consequently, we get

F (d(x2, x3) ≤ F (hH(Sx1, Tx2))

< F (H(Sx1, Tx2)) + τ

which implies

F (d(x2, x3) ≤ F (H(Sx1, Tx2)) + τ

≤ F (d(x1, x2)
α) + τ − 2τ

≤ F (d(x1, x2)
α)− τ

≤ F (d(x1, x2))− τ

By induction, we can find {xn} such that

F (d(xn, xn+1) ≤ F (d(xn−1, xn)α)− τ
≤ F (d(xn−1, xn)α)− τ

...

≤ F (d(x0, x1)
α)− nτ

≤ F (d(x1, x2))− nτ

7
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Let βn = d(xn, xn+1). From above, we receive lim
n→∞

F (βn) = −∞ that to-

gether with (F2) gives
lim
n→∞

βn = 0

Also from (F3) we have there exists l ∈ (0, 1) such that

lim
n→∞

βlnF (βn) = 0

Now, it follows that

βlnF (βn)− βlnF (β0) ≤ βln(F (β0)− nτ)− βlnF (β0)

≤ βlnF (β0)− βlnnτ − βlnF (β0)

≤ −βlnnτ
≤ 0, for all n ∈ N

Letting n as n→∞, so we obtain

nβln = 0 for all n ∈ N

From above, lim
n→∞

nβln = 0 there exist n1 ∈ N such that nβln ≤ 1 for all

n ≥ n1. Therefore, βn ≤
1

n
1
l

, for all n ≥ n1.

Let m,n ∈ N such that m > n ≥ n1. We compute that

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= βn + βn+1 + · · ·+ βm−1

=
m−1∑
i=1

βi

≤
∞∑
i=n

βi

≤
∞∑
i=n

1

i
1
l

By the convergence of the P series
∞∑
i=n

1

i
1
l

, so as n→∞, we obtain

d(xn, xm) → 0 as n → ∞. Hence {xn} is a Cauchy sequence. Since com-
pleteness of X, then {xn} converges to some point Z ∈ X. Clearly, the
subsequence {x2n} and {x2n−1} converge to same point z. Since A and B
are called, we obtain that Z ∈ A ∩B.
From 8, for all x, y ∈ X and α ∈ (0, 1) with H(Tx, Sy) > 0 and d(A,B) = 0,
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we get

2τ + F (H(Tx, Sy)) ≤ F (d(x, y)α) ≤ F (d(x, y))

Since F is strictly increasing, we get H(Tx, Sy) < d(x, y) and so
H(Tx, Sy) ≤ d(x, y) for all x, y ∈ X. Then

d(x2n+1, T z) ≤ H(Sx2n, T z) ≤ d(x2n, z)

passing to limit n→∞, we obtain

d(z, Tz) = d(A,B)

Similarly, we also derive d(Sz, z) = d(A,B).

Case 2: We will show that T or S have best proximity points in A and B
respectively. Under the assumption of d(A,B) > 0, suppose to the contrary,
that is for all a ∈ A, d(a, Ta) > d(A,B) and for all b ∈ B,
d(sb

′
, b
′
) > d(A,B). For each a ∈ A and b ∈ Ta, we have

d(A,B) < d(a, Ta) ≤ d(a, b) (2)

since (T, S) is a multivalued geometric F - contraction pair, such that

F (H(Ta, Sb)) ≤ F (d(a, b)αd(A,B)1−α)− 2τ

< F (d(a, b)αd(A,B)1−α)
(3)

for all a ∈ A and b ∈ Ta. Since F is strictly increasing, we get

H(Ta, Sb) < d(a, b)αd(A,B)1−α (4)

for all a ∈ A and b ∈ Ta.
similarly, we have that for each b

′ ∈ B and a
′ ∈ Sb′ , we get

F (H(Ta
′
, Sb

′
)) < F (d(a

′
, b
′
)αd(A,B)1−α) (5)

and
H(Ta

′
, Sb

′
)) < (d(a

′
, b
′
)αd(A,B)1−α) (6)

Next we will construct the sequence {xn} in A ∪ B. Let {x0} be arbitrary
point of A and x1 ∈ Tx0 ⊆ B.
From (3), there exist x2 ∈ Sx1, such that

F (d(x1, x2)) ≤ F (H(Tx0, Sx1)) + τ

≤ F (d(x0, x1)
αd(A,B)1−α)− 2τ + τ

≤ F (d(x0, x1)
αd(A,B)1−α)− τ

< F (d(x0, x1)
αd(A,B)1−α)

9
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and since F is strictly increasing, we get

d(x1, x2) < d(x0, x1)
αd(A,B)1−α (7)

Since x1 ∈ B and x2 ∈ Sx1 from (5) we can find x3 ∈ Tx2 such that

d(x2, x3) < d(x1, x2)
αd(A,B)1−α) (8)

Consequently, we define the sequence xn in A ∪B such that

x2n−1 ∈ Tx2n−2, x2n ∈ Sx2n−1
and

d(xn, xn+1) < d(xn−1, xn)αd(A,B)1−α (9)

for all n ∈ N. since d(A,B) ≤ d(xn−1, xn) for all n ∈ N, we get

d(x0, xn+1) < d(xn−1, xn)αd(A,B)1−α)

≤ d(xn−1, xn)αd(xn−1, xn)1−α

≤ d(xn−1, xn)αd(xn−1, xn)d(xn−1, xn)−α

≤ d(xn−1, xn)

(10)

and

d(xn, xn+1) < d(xn−1, xn)αd(A,B)1−α

< (d(xn−2, xn−1)
αd(A,B)1−α)αd(A,B)1−α

< d(xn−2, xn−1)
α2

d(A,B)α(1−α)d(A,B)1−α

< d(xn−2, xn−1)
α2

d(A,B)α−α
2+1−α

< d(xn−2, xn−1)
α2

d(A,B)1−α
2

...

< d(x0, x1)
αn

d(A,B)1−α
n

(11)

Hence d(A,B) ≤ d(xn, xn+1) < d(x0, x1)
αn
d(A,B)1−α

n
for all n ∈ N.

Since α ∈ (0, 1) we obtain

lim
n→∞

d(xn, xn+1) = d(A,B) (12)

from (12) we get
lim
n→∞

d(x2n, x2n+1) = d(A,B) (13)

and
lim
n→∞

d(x2n+2, x2n+1) = d(A,B) (14)

10
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Since {x2n} and {x2n+2} are two sequences in A and x2n+1 in sequence B
with (A,B) which satisfies UC∗∗, we derive that

lim
n→∞

d(x2n, x2n+2) = 0 (15)

Since (B,A) satisfies the property UC∗∗ and by (12), we have

lim
n→∞

d(x2n−1, x2n+1) = 0 (16)

Next, we will show that for each ε > 0, there exists N ∈ N 3 for all m > n ≥
N , we have

lim
n→∞

d(x2m, x2n+1) ≤ εd(A,B) (17)

suppose the contrary that there exists ε0 > 0 such that for each k ≥ 1 there
is mk > nk ≥ k such that

d(x2mk
, x2nk+1

) > ε0d(A,B) (18)

Moreover corresponding to nk, we can choose mk in such a way that is the
smallest integer with mk > nk ≥ k satisfying (18). Then we obtain

d(x2mk
, x2nk+1

) > ε0d(A,B) (19)

and
d(x2(mk−1), x2nk+1

) ≤ d(A,B)× ε0 (20)

From (19), (20) and the triangle inequality, we obtain

ε0d(A,B) < d(x2mk
, x2nk+1

)

≤ d(x2mk
, x2(mk−1)) + d(x2(mk−1), x2nk

+ 1)

≤ d(x2mk
, x2(mk−1)) + ε0d(A,B) (21)

using the fact that lim
k→∞

d(x2mk, x2(mk−1)) = 0. Letting k → ∞ in (21), we

get
lim
k→∞

d(x2mk
, x2nk+1

) = ε0d(A,B) (22)

From (9) and (10) and (T, S) is a multivalued geometric F -contraction pair,
we obtain

d(x2mk
, x2nk+1) ≤ d(x2mk

, x2mk+2
) + d(x2mk+2

, x2nk+3
) + d(x2nk+3

, x2nk+1)

≤ d(x2mk
, x2mk+2

) + d(x2mk+1
, x2nk+

) + d(x2nk+3
, x2nk+1)

< d(x2mk
, x2mk+2

)+d(x2nk+3
, x2nk+1)+d(x2mk

, x2nk+1)
αd(A,B)1−α

(23)
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Letting k →∞ in (23) and using (15), (16) and (23), we have

ε0d(a, b) < (d(A,B)× ε0)αd(A,B)1−α

< d(A,B)α × εα0d(A,B)d(A,B)−α

< εα0d(A,B)

which is a contradiction. Therefore (17) holds. Since (13) and (17) hold, by
using property UC∗∗ of (A,B) we obtain d(x2n, x2m)→ 0 as n→∞.
∴ {x2n} is a Cauchy sequence. Since X is complete and A is closed, we have

lim
n→∞

x2n = p (24)

for some p ∈ A = A. But

d(A,B) ≤ d(p, x2n−1)

≤ d(p, x2n) + d(x2n, x2n−1)

for all n ∈ N. From (12) and (24)

lim
n→∞

d(p, x2n−1) = d(A,B) (25)

Since

d(A,B) < d(x2n, Tp)

< H(S2n−1, Tp)

= H(Tp, S2n−1)

≤ d(p, x2n−1)
αd(A,B)1−α

≤ d(p, x2n−1)

(26)

for all n ∈ N. From (24) and (25)

d(p, Tp) = d(A,B) (27)

In a similar mode, we can conclude that the sequence {x2n−1} is a cauchy
sequence in B. Since X is complete and B is closed, we obtain

lim
n→∞

x2n−1 = q (28)

for some q ∈ B = B. Since

d(A,B) ≤ d(x2n, q)

≤ d(x2n, x2n−1) + d(x2n−1, q)

12
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for all n ∈ N. It follows (12) and (28) that

lim
n→∞

d(x2n, q) = d(A,B) (29)

Since
d(A,B) < d(Sq, x2n+1)

≤ H(Sq, Tx2n)

= H(Tx2n, Sq)

< d(x2n, q)
αd(A,B)1−α

≤ d(x2n, q) (30)

for all n ∈ N, then by (28) and (29), we have

d(q, Sq) = d(A,B) (31)

from (27) and (31), we get a contradiction.
∴ T has a best proximity point in A or S has a best proximity point in B.
This completes the proof.
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